
Predicting Public
Transport flow with AI
Forecasting chaotic flows with com-
plex AI architectures

Hephaestus Applied Artificial Intelligence Association

Authors:

Member Role

Andrea Camicia Head
Sofia Guidotti Member
Pavel Siakovpr Member

Maria Ester Massari Member

Milan, February 18, 2025

Contents

1 Mathematical Formulation of the Spatio-Temporal Graph Transformer 2
1.1 Motivation for Key Design Choices . 2
1.2 Notation and Dimensions . 2
1.3 Time-Learnable Encoding . 2
1.4 Graph Adjacency, Trainable Weights, and Spatial Attention 3
1.5 Temporal Attention . 3
1.6 Feed-Forward Network and Gated Residual . 4
1.7 Global Node-Level Attention . 4
1.8 Final Node-Wise Predictions . 4
1.9 Objective, R2 Metric, and Training . 5
1.10 Overall Architectural Summary . 5

2 Data Generation and Preprocessing 6
2.1 Synthetic Data Generation . 6
2.2 Preprocessing and Splitting . 6

3 Proposed Model Architecture Diagram 7

4 Experimental Results on Synthetic Data 9
4.1 Training Setup and Data Splits . 9
4.2 Performance Observations and Generalization . 9

5 Computational Complexity and Scalability 11
5.1 Spatial and Temporal Attention Complexities . 11
5.2 Future Efficiency Strategies . 11

6 Theoretical Justification and Interpretability 12
6.1 Why Transformers for Spatio-Temporal Data? . 12
6.2 Attention Weights and Learned Adjacency . 12

7 Discussion of Limitations and Future Work 13
7.1 Synthetic Data vs. Real-World Generalization . 13
7.2 Model Complexity . 13
7.3 Improved Interpretability . 13
7.4 Conclusion . 13

Predicting Public Transport flow with AI

1 | Mathematical Formulation of the Spatio-Temporal Graph Trans-
former

In this section, we present an in-depth, mathematically rigorous delineation of the architecture and
functional mechanisms embedded in the provided code. This Spatio-Temporal Transformer (STGT) is
designed to handle relational (graph-based) and temporal data simultaneously, leveraging (i) a learnable
temporal encoding scheme, (ii) a spatial attention module endowed with a trainable adjacency matrix,
(iii) a temporal attention module, (iv) gated residual connections, and (v) a global node-level multi-head
attention that operates on the final latent embeddings.

1.1 | Motivation for Key Design Choices
■ Transformer Paradigm: Traditional RNN-based models (e.g., LSTM, GRU) can struggle with

long-range dependencies in time-series forecasting, especially when the number of nodes N is large.
Transformers address this by leveraging attention mechanisms that can capture distant temporal
and spatial interactions in parallel.

■ Trainable Adjacency: While static adjacency structures are informative, many real-world rela-
tionships are dynamic or partially unknown. A learned adjacency offset Wadj allows the model to
refine the original graph topology.

■ Gated Residual Connections: These provide a flexible interpolation between the identity mapping
and the transformed representation, which can stabilize training and help the network retain essential
information.

1.2 | Notation and Dimensions
■ Let B denote the batch size, i.e., the number of sequences processed simultaneously.

■ Let T represent the number of time steps in each input sequence.

■ Let N be the number of nodes in the underlying graph G.

■ Let F signify the number of raw input features per node at each time step.

■ Let d be the model dimension, also referred to as the embedding dimension.

Hence, the input can be conceptualized as a fourth-order tensor

X ∈ RB×T×N×F ,

where Xb, t, n, f represents the feature value corresponding to the b-th sample, at time step t, for node n,
and feature index f .

1.3 | Time-Learnable Encoding
The model replaces canonical sinusoidal positional encodings with a trainable set of embeddings for each
possible time index. Concretely, define a learnable parameter matrix

Etime ∈ RTmax×d,

where Tmax is the maximum sequence length the architecture can accommodate (often set large, e.g.,
1000). If an input sequence has length T ≤ Tmax, we extract

Eslice = Etime[0 : T − 1] ∈ RT×d.

We then broadcast this slice along the node dimension and add it to a learned linear projection of the raw
input. Formally:

X′
b, t, n, : = Wproj Xb, t, n, : + bproj + Eslice[t, :],

where (Wproj,bproj) denote the trainable parameters of the initial linear (Dense) layer mapping RF → Rd.
This yields a transformed representation

X′ ∈ RB×T×N×d,

which explicitly encodes the temporal index in a learnable manner.

Page 2

Predicting Public Transport flow with AI

1.4 | Graph Adjacency, Trainable Weights, and Spatial Attention

1.4.1 | Base Adjacency and Learnable Matrix

We are given a graph G = (V, E) with |V| = N . Let

A ∈ {0, 1}N×N

be the static adjacency matrix derived from G, such that Ai,j = 1 if and only if an edge exists between
node i and node j. The code introduces a trainable real-valued matrix

Wadj ∈ RN×N ,

initialized with small random values (e.g., uniform in [−0.01, 0.01]). We combine these via

Aeff = σ(A+Wadj),

where σ(·) is the element-wise logistic sigmoid function. This allows the network to deviate from the base
adjacency pattern by reinforcing or diminishing each connection in a continuous manner. The emergent
matrix Aeff thus encodes a soft connectivity that is learned end-to-end via gradient-based optimization.

1.4.2 | Spatial Multi-Head Attention

We define Z ∈ RB×T×N×d as the input to the spatial attention mechanism. For multi-head attention
(MHA) over the node dimension, we first reshape:

Zreshaped ∈ R(B×T)×N×d.

Within a single attention head, recall the classical Transformer attention formulation: let h be the number
of heads, and let dk = d/h be the dimension per head (assuming d is divisible by h). For each head
i ∈ {1, 2, . . . , h}, we compute:

Qi = Zreshaped W
Q
i , Ki = Zreshaped W

K
i , Vi = Zreshaped W

V
i ,

where WQ
i ,W

K
i ,WV

i ∈ Rd×dk are learnable projection matrices. The raw attention output for head i is:

Headi = softmax

(
Qi K

⊤
i√

dk
+Madj

)
Vi,

where Madj is an attention mask derived from Aeff . Specifically, the code sets

[Madj]j,k =

{
0, if Aeff(j, k) is large (connected),

−109, if Aeff(j, k) is near 0 (disconnected).

Hence, the self-attention weights between two nodes j and k become negligible if Aeff(j, k) ≈ 0.
The h heads are then concatenated:

MHA(Zreshaped) = Concat(Head1,Head2, . . . ,Headh)W
O,

where WO ∈ R(h·dk)×d is a trainable output projection. We then reshape back to RB×T×N×d. Let Z̃spatial

denote this MHA output. The final step is a residual connection plus layer normalization:

Z
(spatial)
out = LayerNorm

(
Z+Dropout(Z̃spatial)

)
.

1.5 | Temporal Attention

Given Z
(spatial)
out ∈ RB×T×N×d, we apply temporal multi-head attention. Here, each node’s temporal

evolution is treated as a standalone sequence, decoupled from other nodes. Formally, for each node n, we
have:

Z:, :, n, : ∈ RB×T×d.

Page 3

Predicting Public Transport flow with AI

We reshape to:
Ztemp reshaped ∈ R(B×N)×T×d,

then perform standard multi-head self-attention across the time dimension:

Ztemp attn = MHA
(
Ztemp reshaped, Ztemp reshaped, Ztemp reshaped

)
.

We map the result back to RB×T×N×d and again employ a residual+normalization step:

Z
(temporal)
out = LayerNorm

(
Z

(spatial)
out +Dropout(Ztemp attn)

)
.

1.6 | Feed-Forward Network and Gated Residual
Each STAttentionBlock concludes with a feed-forward sub-network of dimension dff , typically realized as

a stack of Dense layers with nonlinear activations (e.g. GELU). Concretely, let Y = Z
(temporal)
out . Then:

F1 = Dropout
(
GELU(YW1 + b1)

)
, F2 = Dropout

(
GELU(F1W2 + b2)

)
,

and so on, culminating in a projection back to d dimensions:

Fout = F2W3 + b3,

where (W1,b1), (W2,b2), and (W3,b3) are trainable parameters. We then incorporate a gated residual
connection:

Zgated = αY + (1− α)Fout,

where α is a trainable scalar (e.g. initialized to 0.5). Finally, we apply layer normalization:

Zblock out = LayerNorm
(
Zgated

)
.

By stacking multiple STAttentionBlocks (indexed by l = 1, 2, . . . , L), we obtain a deeper spatio-temporal
feature representation.

1.7 | Global Node-Level Attention

After the final block, we have Zblock out ∈ RB×T×N×d. We select the last time step, t = T − 1:

H = Zblock out[:, T − 1, :, :] ∈ RB×N×d.

This H is a sequence of N node embeddings, each in Rd. We then apply another multi-head attention
block:

Hattn = MHA
(
H,H,H

)
,

with, for example, 4 heads. A residual connection plus layer normalization yields

Hout = LayerNorm
(
H+Hattn

)
.

1.8 | Final Node-Wise Predictions

We next pass each node’s representation Hout ∈ RB×N×d through a small MLP, typically consisting of
one or two Dense layers with GELU activations, plus dropout. Denoting these transformations collectively
as Θ(·), we obtain:

R = Θ
(
Hout

)
∈ RB×N×d′

,

where d′ is an intermediate hidden size (e.g. 128 or 256). The final output layer, Dense(1), yields

Ŷ = Dense(R) ∈ RB×N×1,

providing one scalar regression output per node.

Page 4

Predicting Public Transport flow with AI

1.9 | Objective, R2 Metric, and Training

While the code snippet accommodates a generic loss function (e.g. MSE), we also define a custom R2

metric:

R2(Y, Ŷ) = 1 −

∑
b,n

(
Yb,n − Ŷb,n

)2
∑
b,n

(
Yb,n − Y

)2 ,

where Y is the mean of all ground-truth values Yb,n in the training (or validation) set. At each iteration
of training (e.g., SGD or Adam), the model updates:

■ The time-embedding weights Etime,

■ The adjacency offsets Wadj,

■ All parameters in the multi-head attention layers (WQ
i ,W

K
i ,WV

i ,W
O, etc.),

■ The feed-forward networks and gating parameters (α),

■ The final MLP parameters for the node-wise predictions,

in order to minimize the chosen loss (e.g. MSE) and potentially maximize R2 on validation sets.

1.10 | Overall Architectural Summary
To recapitulate in a concise blueprint:

1. Time Embedding: X′ = TimeLearnableEncoding(X) ∈ RB×T×N×d.

2. STAttention Blocks (stacked L times): for l ∈ {1, . . . , L},

Z(l) = LayerNorm
(
GatedRes

(
FFN(TemporalAttn(SpatialAttn(Z(l−1))))

))
.

Each SpatialAttn uses Aeff = σ(A+Wadj).

3. Extraction of Final Time Step: H = Z(L)[:, T − 1, :, :].

4. Global Node-Level Attention: Hout = LayerNorm
(
H+MHA(H,H,H)

)
.

5. Projection to Scalar Output: Ŷ ∈ RB×N×1 = Dense
(
MLP(Hout)

)
.

Page 5

Predicting Public Transport flow with AI

2 | Data Generation and Preprocessing

To evaluate and illustrate the Spatio-Temporal Transformer, we employ a synthetic transport dataset that
preserves a number of realistic characteristics: demand surges at peak times, seasonal fluctuations, and
event-induced irregularities. The Python functions generate_transport_data and preprocess_data

encapsulate this logic. We now provide an overview of how the data is generated and normalized before
being fed into the model.

2.1 | Synthetic Data Generation
We generate a date range from a specified start date to an end date at 30-minute intervals. Each node
(e.g., a station) is associated with a baseline demand ranging from 100 to 1000 passengers. We introduce:

■ Weekday vs. Weekend Adjustments: A factor to reduce demand on weekends (∼0.8).

■ Peak Hour Multipliers: Increased values (up to 1.5×) for morning and evening rush hours.

■ Seasonal Sinusoidal Factors: A 20% periodic fluctuation across the year.

■ Noise and Random Variation: Gaussian noise (N (1, 0.05)) and minor random scalings (uniform
in [0.9, 1.1]) to simulate fine-grained fluctuations.

■ Temporal Trend: A subtle upward drift introduced over time.

■ Events (Optional): Further multipliers for dates that fall within special events.

After constructing the full X (with dimensions [TimeSteps] × [Nodes] × [Features]), we produce input-
output sequences by choosing a history length (time_steps). Each sample thus consists of a window of X
spanning time_steps intervals, and we define the target y via a simple combination of the features (e.g.,√
Xi, log(1 +Xi), etc.) plus a portion of the adjacency-weighted average. This encourages the model to

capture both node-specific behaviors and relational influences.

2.2 | Preprocessing and Splitting
We apply a MinMax scaling procedure separately to the features X and the target y. By default, we split
the data into a training set (first 80% of available years) and a test set (remaining 20%). The final output
is:

■ Xtrain,ytrain and Xtest,ytest in normalized form,

■ The corresponding scaler X and scaler y objects to transform new data or invert the normalization,

■ The years and dates arrays to keep track of each sequence’s temporal context.

Through these procedures, the network is presented with input sequences capturing multi-featured node
activity over a temporal window, enabling robust modeling of complex spatio-temporal patterns.

Page 6

Predicting Public Transport flow with AI

3 | Proposed Model Architecture Diagram

Figure 3.2 shows a high-level sketch of the Spatio-Temporal Graph Transformer (STGT) with the major
components discussed in Section 1. Notably, each node’s historical data is embedded (via time-learnable
encodings), then passed through spatial and temporal multi-head attention blocks, followed by a final
global node-level attention module.

Figure 3.1: High-level architecture of the Spatio-Temporal Graph Transformer (STGT). Input data is
first projected and combined with a trainable temporal embedding. The network then applies repeated
blocks of spatial attention and temporal attention (with a learnable adjacency), culminating in a final
node-level attention and an MLP-based output.

Page 7

Predicting Public Transport flow with AI

Figure 3.2: Continuation of 3.1.

Each multi-head attention block operates either on the node dimension (spatial) or on the time dimension
(temporal). The adjacency offsets Wadj are learned end-to-end, allowing the model to refine or discover
node-to-node relationships. A final MLP yields one scalar prediction per node. Gated residual connections
(see Section 1.5) help stabilize training by controlling the balance between direct skip-connections and
transformed representations.

Page 8

Predicting Public Transport flow with AI

4 | Experimental Results on Synthetic Data

In this section, we provide a discussion of the model’s performance on a purely synthetic dataset. Real-
world data were unavailable at the time of this study, so we generated a custom synthetic dataset that
reflects **several realistic features**, including:

■ Baseline Time Series: A smooth periodic signal to model daily or weekly cycles.

■ Gaussian Noise: Added to each node’s time series to capture random fluctuations.

■ Weather Features: Simulated attributes such as temperature or precipitation, randomly varying
but correlated with certain seasonal patterns.

■ Event Features: Synthetic markers for special events (e.g., holidays), randomly distributed
throughout the timeline but influencing spikes in flow.

By incorporating these elements, we aimed to mirror some complexities found in real public transport
data—namely periodic behavior, abrupt changes, and correlated external factors.

4.1 | Training Setup and Data Splits
Data Construction. We synthesized a dataset of N nodes, each having F features (including weather,
events, and baseline signals). The adjacency matrix A was chosen to reflect partially connected subgraphs,
and small random offsets were introduced.

Train/Test Splits.

■ Training Sequences: t = 0 to t = 250 and t = 251 to t = 500.

■ Long-Horizon Prediction: The model was tested on forecast windows extending from t = 12,251
to t = 12,500 to evaluate long-range predictive capability.

The model was trained for approximately 30–40 epochs. Despite this short regime, the STGT demonstrated
quick convergence on the synthetic data, highlighting its capacity to capture both the temporal cycles and
the inter-node relationships.

4.2 | Performance Observations and Generalization
Loss Convergence. During training, the mean squared error (MSE) dropped substantially within the
first few epochs, suggesting that the network effectively captures the synthetic data’s salient features.
Additional epochs yield minor improvements, indicating a relatively stable training process.

Cumulative Prediction. To gauge the model’s global performance, we aggregate predictions over all
nodes at each time step:

ŷcumulative(t) =
1

N

N∑
n=1

Ŷn,t, ycumulative(t) =
1

N

N∑
n=1

Yn,t.

This smooths out local node-level fluctuations and emphasizes the general trend. Figure 4.2 illustrates that
the predicted and true mean flow values are closely aligned, confirming the STGT’s ability to reproduce
global behaviors.

Page 9

Predicting Public Transport flow with AI

Figure 4.1: Comparison of cumulative (mean) true vs. predicted flow values across all nodes.

Long-Horizon Forecasts. The model’s extrapolation to t ≈ 12,500 reproduced the cyclic patterns
induced by the synthetic daily or weekly cycles, although certain outliers (e.g., event-driven spikes) were
challenging. Overall, the ability to track the general cyclical behavior over such an extended horizon is
encouraging.

Figure 4.2: Comparison of true vs. predicted flow value at one specific node of the network.

Adjacency Adaptation. Even in this synthetic scenario, the trainable adjacency offsets Wadj proved
beneficial. Nodes with correlated signals were reinforced, while weak or spurious connections tended
toward near-zero effective adjacency. This aligns well with the intuition that the model can “re-wire” the
graph if the original topology is incomplete or partially incorrect.

Page 10

Predicting Public Transport flow with AI

5 | Computational Complexity and Scalability

Although the emphasis here is on modeling efficacy rather than large-scale benchmarks, it is important to
recognize the theoretical complexity of STGT layers.

5.1 | Spatial and Temporal Attention Complexities

Spatial Attention. For N nodes, naive self-attention is O(N2d) per head. Since this is applied for
each time step and batch, memory and compute can become substantial as N grows.

Temporal Attention. For each node, attending over T time steps yields O(T 2d). Multiplied by N
nodes and B samples, this can also grow quickly.

5.2 | Future Efficiency Strategies
For very large N or T , one may consider:

■ Sparse Attention: Apply block- or locality-based attention patterns.

■ Low-Rank Factorization: Decompose large attention matrices to reduce complexity.

■ Distributed Training: Split data or model parameters across multiple GPUs/TPUs.

Page 11

Predicting Public Transport flow with AI

6 | Theoretical Justification and Interpretability

6.1 | Why Transformers for Spatio-Temporal Data?
■ Parallel Computation: Unlike RNNs, Transformers process entire sequences in parallel.

■ Adaptive Focus: Attention heads learn which nodes and time steps deserve the most “focus.”

■ Learnable Graph Structure: Through Wadj, the model can discover latent links that are not
obvious in an a priori adjacency matrix.

6.2 | Attention Weights and Learned Adjacency
Visualizing attention weights provides a window into how the network redistributes emphasis across nodes
and time steps. In practice, one can:

■ Plot heatmaps of σ(A+Wadj) to reveal newly “discovered” or diminished connections.

■ Examine the final node-level attention to see which nodes have the greatest pairwise influence.

Page 12

Predicting Public Transport flow with AI

7 | Discussion of Limitations and Future Work

While the synthetic experiments demonstrate the feasibility of STGT for complex spatio-temporal
prediction, the following points warrant further investigation:

7.1 | Synthetic Data vs. Real-World Generalization
Our results currently rely on synthetic data, which, despite efforts to include noise, weather, and event
features, cannot fully replicate the richness of real operational environments. Future work should apply
STGT to real transport datasets, addressing:

■ Missing Data and Irregular Sampling

■ Sensor or Logging Errors

■ Varied Graph Topologies

7.2 | Model Complexity

■ Memory Footprint: Both spatial and temporal attention are O(N2) and O(T 2), respectively.

■ Scalability: For N ≫ 103 or T ≫ 103, specialized attention mechanisms or distributed training
may be required.

7.3 | Improved Interpretability
Additional methods (e.g., layerwise relevance propagation, attention roll-out) could help domain experts
understand why certain nodes are prioritized or how the adjacency matrix evolves during training.

7.4 | Conclusion
In summary, the Spatio-Temporal Transformer architecture described here—featuring learnable temporal
embeddings, spatial attention with adjustable adjacency, temporal attention for each node sequence, and a
gated residual feed-forward network—provides a compelling framework for high-dimensional graph-based
time series forecasting. While these initial results using synthetic data are promising, real-world validation
and further research on scalability, interpretability, and model optimization remain essential next steps in
advancing this methodology.

Page 13

	Mathematical Formulation of the Spatio-Temporal Graph Transformer
	Motivation for Key Design Choices
	Notation and Dimensions
	Time-Learnable Encoding
	Graph Adjacency, Trainable Weights, and Spatial Attention
	Temporal Attention
	Feed-Forward Network and Gated Residual
	Global Node-Level Attention
	Final Node-Wise Predictions
	Objective, R2 Metric, and Training
	Overall Architectural Summary

	Data Generation and Preprocessing
	Synthetic Data Generation
	Preprocessing and Splitting

	Proposed Model Architecture Diagram
	Experimental Results on Synthetic Data
	Training Setup and Data Splits
	Performance Observations and Generalization

	Computational Complexity and Scalability
	Spatial and Temporal Attention Complexities
	Future Efficiency Strategies

	Theoretical Justification and Interpretability
	Why Transformers for Spatio-Temporal Data?
	Attention Weights and Learned Adjacency

	Discussion of Limitations and Future Work
	Synthetic Data vs. Real-World Generalization
	Model Complexity
	Improved Interpretability
	Conclusion

